

07/18/2007

ECC 63 Herb Hill Road Glen Cove, NY 11542 **STL Edison** 777 New Durham Road Edison, NJ 08817

Tel 732 549 3900 Fax 732 549 3679 www.stl-inc.com

Attention: Mr. Theodore Johnson

Laboratory Results Job No. I199 - Li Tungsten

Dear Mr. Johnson:

Enclosed are the results you requested for the following sample(s) received at our laboratory on June 30, 2007.

<u>Lab No.</u>	Client ID	Analysis Required
842872	5601-FSS-PC-10B3	As
		Pb
842873	5601-FSS-PC-10B4	As
		Pb
842874	5601-FSS-PC-10B5	As
		Pb
842875	5601-FSS-PC-10B6	As
		Pb
842876	5601-FSS-PC-1043	As

STL Edison 777 New Durham Road Edison, NJ 08817

Tel 732 549 3900 Fax 732 549 3679 www.stl-inc.com

Laboratory Results
Job No. I199 - Li Tungsten (cont'd)

<u>Lab No.</u> <u>Client ID</u> <u>Analysis Required</u>

Pb

This report is not to be reproduced, except in full, without the written approval of the laboratory.

If you have any questions, please contact me at (732) 549-3900.

Very Truly Yours,

Michael Legg Project Manager

Analytical Results Summary	1
General Information	7
Chain of Custody	7
Laboratory Chronicles	9
Methodology Review	15
Data Reporting Qualifiers	19
Non-Conformance Summary	21
Metals Forms and Data	23
Analytical Results Summary	23
Blank Results Summary	29
Calibration Summary	34
ICP Interference Check Results Summary	39
Spike Sample Recovery Summary	43
Sample and MS Duplicate Results Summary	46
Laboratory Control Samples Results Summary	49
Serial Dilution Summary	51
Analysis Run Log	53
This is the Last Page of the Document	58

Analytical Results Summary

Site: Li Tungsten

Lab Sample No: 842872

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07

Matrix: SOLID Level: LOW

% Moisture: 16.9

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection Limit	Qual	M
Arsenic	61.5	1.1		P
Lead	416	0.65		P

Site: Li Tungsten

Lab Sample No: 842873

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07 Matrix: SOLID

Level: LOW

% Moisture: 24.0

METALS ANALYSIS

Analytical

<u>Analyte</u>	Result Units: mg/kg (Dry Weight)	Instrument Detection <u>Limit</u>	<u>Q</u> ual	<u>M</u>
Arsenic	77.0	1.2		P
Lead	6 4 8	0.71		P

Site: Li Tungsten

Lab Sample No: 842874

Lab Job No: I199

Date Sampled: 06/29/07
Date Received: 06/30/07

Lead

Matrix: SOLID

Level: LOW

% Moisture: 19.7

METALS ANALYSIS

	Analytical Result	Instrument		
<u>Analyte</u>	Units: mg/kg (Dry Weight)	Detection Limit	_Oual_	<u>M</u>
Arsenic	153	1.2		P

439

0.67

Site: Li Tungsten

Lab Sample No: 842875

Lab Job No: I199

Date Sampled: Date Received: 06/30/07

06/29/07

Matrix: SOLID

Level: LOW

% Moisture: 26.0

METALS ANALYSIS

Analytical

	Result	Instrument		
	Units: mg/kg	Detection		
<u>Analyte</u>	(Dry Weight)	Limit	<u>Qual</u>	<u>M</u>
Arsenic	210	1.3		P
Lead	579	0.73		P

Site: Li Tungsten

Lab Sample No: 842876

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07 Matrix: SOLID

Level: LOW

% Moisture: 20.8

METALS ANALYSIS

	Analytical			
	Result Units: mg/kg	Instrument Detection		
<u>Analyte</u>	(Dry Weight)	<u>Limit</u>	<u>Qual</u>	<u>M</u>
Arsenic	148	1.2		P
Lead	410	0.68		P

General Information

Chain of Custody

Environmental Chemical Comment								
6 1746 Cole Blvd.	al corporation							
Bldg. 21, Suite 350				807			***	
Lakewood, CO 80401		•	1 #40	11/1				
Phone: (303) 298-7607 Fax: (303) 298-7837		,	Ĩ	~ •				
Customer Name: ECC - Li Tungsten	Tungsten				COC Number:			
Address: 63 Herb Hill Road, Glen Cove, NY 11542	, Glen Cove, NY 115	42		v.	ECC Project Manager: Phil O'Dwyer Address: 63 Herb Hill Road, Glen Cove. NY 11542	r:_Phil O'Dwyer I Road. Glen Cove. N	IV 11542	
Contact: Theodore Johnson	e							
Phone: (303) 472 - 8834 Fax: (516) 665- 8531				- <u>-</u>	Phone: (614) 402 - 2020 Customer Project Name: Li Tungsten)20 me: Li Tungsten		
SAMPLE NUMBER	DATE	TIME	TYPE	CHENT SAMPLE INFINITIERS				
3601 -FSS-PC-10B3	6/29/2007	17.05	Fee	CHILL SAMPLE IDENTIF	IEN IESIS	CONTAINER(S)	MATRIX	:
i601 -FSS-PC-10B4	6/29/2007	17:00	86.	Parcel C	T	1 glass jar	Soil	248748
-1 601 -FSS-PC-10B5	6/29/2007	16:45	20 00	Parcel C	e e e e e e e e e e e e e e e e e e e	1 glass jar	Soil	673
601 -FSS-PC-10B6	6/29/2007	46.50	201	Parcel C	10tal Lead & Arsenic	1 glass jar	Soil	ht8
	100-100-100-100-100-100-100-100-100-100	20:30	T.55	Parcel C		1 glass jar	Soil	875
	6/29/2007	16:50	FSS	Parcel C		1 glass jar	Soil	876
¥ i Ci								•
4/ d					1			
ĕ								
∀								
Α)								
K								
otes:								
ip to: Severn Trent Laboratory, EDISON 7 New Durham Road, Suite 7, Edison, New Jersey 08817	ry, EDISON 7, Edison, New Jerse	v 08817	Samples c	Samples cooled below 4 C	Laboratory Receipt Information Cooler/Container Infact?	mation Yes	Š	
lone: 732-549-3900 guest Turnaround Time: 3 Day	Day			5	Samples Received At Below 4 C? Samples Containers Intact?		2 g	
Relinaniehod B.			CUSTODY TR	DY TRANSFER RECORD	Cooler/Container Custody Seal?	dy Seal? Yes	ŝ	
Actinomical Dy		Company	Date		Received By Company	tny Date	Time	
nt.T Johnson Sign:		ECC	2002/62/9	17.45				
•	104			+				
int	7228		6/30	0) 16:40 Print	Sinasinum Testanurain	rathe	05:4	
int:					70.			
8				Print:				

Laboratory Chronicles

777 New Durham Road, Edison, New Jersey 08817

Job No:	1199	Site:	Li Tungsten
Client:	ECC	Date Sampled:	6/29/2007
Sample No.:	842872	Date Received:	6/30/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858
LEAD	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858

777 New Durham Road, Edison, New Jersey 08817

Job No:	1199	Site:	Li Tungsten
Client:	ECC	Date Sampled:	6/29/2007
Sample No.:	842873	Date Received:	6/30/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858
LEAD	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858

777 New Durham Road, Edison, New Jersey 08817

Job No:	<u>I199</u>	Site:	Li Tungsten
Client:	ECC	Date Sampled:	6/29/2007
Sample No.:	842874	Date Received:	6/30/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858
LEAD	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858

777 New Durham Road, Edison, New Jersey 08817

Job No:	<u>I199</u>	Site:	Li Tungsten
Client:	ECC	Date Sampled:	6/29/2007
Sample No.:	842875	Date Received:	6/30/2007
		Matrix:	SOLID

Analytic Parameter	Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
ARSENIC	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858
LEAD	7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858

777 New Durham Road, Edison, New Jersey 08817

Job No:	<u>I199</u>	Site:	Li Tungsten
Client:	ECC	Date Sampled:	6/29/2007
Sample No.:	842876	Date Received:	6/30/2007
•		Matrix:	
		mati ix.	<u> </u>

Preparation Date	Technician's Name	Analysis Date	Analyst's Name	QA Batch
7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858
7/2/2007	Evans, Donald	7/3/2007	Polidori, Michael	22858
	7/2/2007	7/2/2007 Evans, Donald	7/2/2007 Evans, Donald 7/3/2007	7/2/2007 Evans, Donald 7/3/2007 Polidori, Michael

Methodology Review

Analytical Methodology Summary

Volatile Organics:

Unless otherwise specified, water samples are analyzed for volatile organics by purge and trap GC/MS as specified in EPA Method 624. Drinking water samples are analyzed by EPA Method 524.2 Rev 4.1. Solid samples are analyzed for volatile organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8260B.

Acid and Base/Neutral Extractable Organics:

Unless otherwise specified, water samples are analyzed for acid and/or base/neutral extractable organics by GC/MS in accordance with EPA Method 625. Solids are analyzed for acid and/or base/neutral extractable organics as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8270C.

GC/MS Nontarget Compound Analysis:

Analysis for nontarget compounds is conducted, upon request, in conjunction with GC/MS analyses by EPA Methods 624, 625, 8260B and 8270C. Nontarget compound analysis is conducted using a forward library search of the EPA/NIH/NBS mass spectral library of compounds at the greatest apparent concentration (10% or greater of the nearest internal standard) in each organic fraction (15 for volatile, 15 for base/neutrals and 10 for acid extractables).

Organochlorine Pesticides and PCBs:

Unless otherwise specified, water samples are analyzed for organochlorine pesticides and PCBs by dual column gas chromatography with electron capture detectors as specified in EPA Method 608. Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition) Method 8081A for organochlorine pesticides and Method 8082 for PCBs.

Total Petroleum Hydrocarbons:

Water samples are analyzed for petroleum hydrocarbons by I.R. using EPA Method 418.1. Solid samples are prepared for analysis by soxhlet extraction consistent with the March 1990 N.J. DEP "Remedial Investigation Guide" Appendix A, page 52, and analyzed by U.S. EPA Method 418.1

Metals Analysis:

Metals analyses are performed by any of four techniques specified by a Method Code provided on each data report page, as follows:

- P Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP)
- A Flame Atomic Absorption
- F Furnace Atomic Absorption
- CV Manual Cold Vapor (Mercury)

Water samples are digested and analyzed using EPA methods provided in "Methods for Chemical Analysis of Water and Wastewater" (EPA 600/4-79-020). Solid samples are analyzed as specified in the EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition); samples are digested according to Method 3050B "Acid Digestion of Soil, Sediments and Sludges."

Specific method references for ICP analyses are water Method - 200.7/SW846 6010B and for solid matrix - 6010B. Mercury analyses are conducted by the manual cold vapor technique specified by water Method 245.1/7470A and solid Method 7471A. Other specific Atomic Absorption method references are as follows:

Element	Water Test Method <u>Furnace</u>	Solid Test Method Furnace
Antimony	200.9	7041
Arsenic	200.9	7060A
Cadmium	200.9	7131A
Lead	200.9	7421
Selenium	200.9	7740
Thallium	200.9	7841

Cyanide:

Water samples are analyzed for cyanide using EPA Method 335.3. Cyanide is determined in solid samples as specified in the EPA Contract Laboratory Program IFB dated July 1988, revised February 1989.

Phenols:

Water samples are analyzed for total phenols using EPA Method 420.2. Total phenols are determined in water and solid samples by preparing the sample as outlined in the EPA Contract Laboratory Program IFB for cyanide, followed by a phenols determination using EPA Method 420.1.

Hexavalent Chromium:

Water samples are analyzed using EPA Method 7196A, EPA Method 7199 or (upon request) USGS -1230-35. Soil samples are subjected to alkaline digestion via EPA Method 3060A prior to analysis by EPA Method 7196A or EPA Method 7199.

Cleanup of Semivolatile Extracts:

Upon request Method 3611B Alumina Column Cleanup and/or Method 3650B Acid-Base Partition Cleanup are performed to improve detection limits by the removal of saturated hydrocarbon interferences.

Hazardous Waste Characteristics:

Samples for hazardous waste characteristics are analyzed as specified in the U.S. EPA publication "Test Methods for Evaluating Solid Waste" (SW-846, 3rd Edition). Specific method references are as follows:

Ignitability - Method 1020A

Corrosivity - Water pH Method 9040B Soil pH Method 9045C

Reactivity - Chapter 7, Section 7.3.3 and 7.3.4 respectively for hydrogen cyanide and hydrogen sulfide release

Toxicity - TCLP Method 1311

Miscellaneous Parameters:

Additional analyses performed on both aqueous and solid samples are in accordance with methods published in the following references:

- Test Methods for Evaluating Solid Wastes, SW-846 3rd Edition, November 1986.
- Standard Methods for the Examination of Water and Wastewater, 18th Edition.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, 1979.

Data Reporting Qualifiers

ORGANIC DATA REPORTING QUALIFIERS

- ND The compound was not detected at the indicated concentration.
- J Mass spectral data indicates the presence of a compound that meets the identification criteria. The result is less than the specified quantitation limit but greater than or equal to the method detection limit. The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
 - * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

INORGANIC DATA REPORTING QUALIFIERS (SW-846 METHODS ONLY)

- ND/U The compound was not detected at the indicated concentration.
- B Reported value is less than the Practical Quantitation Limit but greater than or equal to the Instrument Detection Limit.
- E The reported value is estimated because of the presence of interference. See explanatory note in the Nonconformance Summary if the problem applies to all of the samples or on the individual Inorganic Analysis Data Sheet if the problem is isolated.
- M Duplicate injection precision not met on the Furnace Atomic Absorption analysis.
- N The spiked sample recovery is not within control limits.
- S The reported value was determined by the Method of Standard Additions (MSA).
- * Duplicate Analysis is not within control limits.
- W Post digestion spike for Furnace Atomic Absorption analysis is out of control.
- + Correlation coefficient for MSA is less than 0.995.
- M Column Method Qualifiers
- P Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP).
- A Flame Atomic Absorption Spectroscopy (FAA).
- F Graphite Furnace Atomic Absorption Spectroscopy (GFAA).
- CV Cold Vapor Atomic Absorption Spectroscopy.

Non-Conformance Summary

Nonconformance Summary

STL Edison Job Number: <u>I199</u>

Client: ECC

Date: $\frac{7/18/2007}{}$

Sample Receipt:

Sample delivery conforms with requirements.

Metals:

All data conforms with method requirements.

I certify that the test results contained in this data package meet all requirements of NELAC both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this package has been authorized by the Laboratory Director or their designee, as verified by the following signature.

Michael Legg Project Manager

· ·

Metals Forms and Data

Analytical Results Summary

Site: Li Tungsten

Lab Sample No: 842872

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07

Matrix: SOLID Level: LOW

% Moisture: 16.9

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection <u>Limit</u>	<u>Qual</u>	<u>M</u>
Arsenic	61.5	1.1		P
Lead	416	0.65		P

Site: Li Tungsten

Lab Sample No: 842873

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07

Matrix: SOLID Level: LOW

% Moisture: 24.0

METALS ANALYSIS

<u>Analyte</u>	Analytical Result Units: mg/kg (Dry Weight)	Instrument Detection <u>Li</u> mit	<u> Oual</u>	<u>M</u>
Arsenic	77.0	1.2		P
Lead	648	0.71		P

Site: Li Tungsten

Lab Sample No: 842874

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07

Matrix: SOLID Level: LOW

% Moisture: 19.7

METALS ANALYSIS

_	Analytical Result Units: mg/kg	Instrument Detection		
<u>Analyte</u>	(Dry Weight)	<u>Limit</u>	Qual	<u>M</u>
Arsenic	153	1.2		P
Lead	439	0.67		P

Site: Li Tungsten

Lab Sample No: 842875

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07

Matrix: SOLID Level: LOW

% Moisture: 26.0

METALS ANALYSIS

	Analytical			
	Result	Instrument		
	Units: mg/kg	Detection		
<u>Analyte</u>	(Dry Weight)	Limit	Qual	<u>M</u>
Arsenic	210	1.3		P
Lead	579	0.73		P

Site: Li Tungsten

Lab Sample No: 842876

Lab Job No: I199

Date Sampled: 06/29/07 Date Received: 06/30/07 Matrix: SOLID Level: LOW

% Moisture: 20.8

METALS ANALYSIS

	Analytical Result	Instrument		
<u>Analyte</u>	Units: mg/kg (Dry Weight)	Detection <u>Limit</u>	Oual	<u>M</u>
Arsenic	148	1.2		₽
Lead	410	0.68		P

Blank Results Summary

цар	Name:	TEST_AMERIC		· .
Lab	Code:	12028_	Lab Job No.: _I199	Batch No.: 22858_

Preparation Blank Matrix (soil/water): SOIL_

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Initial Calib. Blank (ug/L)	C	Cont			Calib (ug/L 2			3	C	Prepa- ration Blank	С	
Aluminum_		_					1	ĺ		I		Τ	 NR
Antimony_				i-				i		1-1		i-	NR
Arsenic	4.7	ַ ט	4.7	<u>י</u>		4.7	Ū	i —	4.7	ָוֹ <u>י</u> ַ דּוֹ	0.470	Ū	P
Barium				j	i —		ì	i		i i		i	NR
Beryllium		_ _ _		i-	ĺ	-	i-	i		i-i		i-	NR
Cadmium		_ _ _		ĬΞ			j_			i - i		i – i	NR
Calcium				iΞ		,	i -	i		i-i		i – i	NR
Chromium_		.i_i_		Ī			i –	i —		i-i		i – i	NR
Cobalt		[[_i_		i ⁻			i	i		i-i		-	NR
Copper		1213		i			i-	i —		i-i		i i	NR
Iron		_ _ _		ĬΞ			i ⁻					-	NR
Lead	2.7	ַ [ט	2.7	U		2.7	บั	i —	2.7	וּטוֹ	0.270	ָ ָּדֶ	P
Magnesium		_ _ _		İ_			İ	<u> </u>		Ιί	\		NR
Manganese		. _ _		Ĭ_			i – .			i-i		-	NR
Mercury		_ _ _		_				i		i-i		i – i	NR
Nickel		. _ _		ĬΞ			i_	i		iΞi		- i	NR
Potassium		. <u>.</u> _		ĬΞ.			i	i		iΤi		i – i	NR
Selenium_		. _ _					İ			iΞi		_;	NR
Gilver				<u> </u>			i Ti			i-i		-i	NR
Sodium				i			j – į			iΞi		-i	NR
hallium_	**	. _ _		<u> </u> _			ii			i-i		-	NR
/anadium_		. _ _		<u> </u>			<u> </u>			i i		-i	NR
Sinc		_ _		<u> </u>			i			i-i		-	NR
Molybdenu		_ _		_i			i _ i			i i		-i	NR
		_ _ _		ΙĪ			i – i			i~i		-¦	

Dab Name: TEST_AMERICA	
Lab Code: 12028_ Lab Job No.: _I199	Batch No.: 22858_
Preparation Blank Matrix (soil/water):	
Preparation Blank Concentration Units (ug/L or mg/kg):

Analyte	Initial Calib. Blank (ug/L)	c	Cont		uing Calib lank (ug/I 2			C	Prepa ratio	n	
Aluminum		丁		1	1	1		<u> </u>			 NF
Antimony		-i-i		'i-	ļ	- -	- 	-¦-		-	NF
Arsenic		-i-i	4.7	֓֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֟֓֓֡֡֓֓֡֡֓		- -	-	¦			NF P
Barium		-i-i		i	<u> </u>	·¦-	-	-¦-	/	-	NE
Beryllium		-i-i		1-		`	-	- -		—¦-	NE
Cadmium		-i-i		i-		'i-	- i 	~¦-¦		¦-	NR
Calcium		-i-i		i	¦	i-	·	-¦-¦	/		NR
Chromium_		i-i		i-	·	` -		-		—¦-	NR
Cobalt		<u> </u>		i-		¦-	·	- -		-	NR
Copper				i –		1		-¦-¦		-¦-	NR
Iron		ΙΞί		i ⁻		i-		-			NR
Lead			2.7	jσ		i-	· [-			P
Magnesium		121		İ	~	i-		-¦¦		¦	NR
Manganese		.[_[.		i_		i-		- -			NR
Mercury	100	. [[.		j	·	i-		-¦¦		-	NR
Jickel		.[_[.		i —		i-		-i-i			NR
Potassium		.[_].		i		i-		-i-i			NR
Selenium_				<u> </u>		i-		-j-i		-	NR
Silver		1_1.		i i		i-		-i-i		-	NR
odium		1_1		<u>_</u>		j	j	- -	<u> </u>	-¦-¦	NR
hallium_		1_1		<u> </u>		i –	İ	-i-i		- -	NR
anadium_ _		1_1_		_ _		Ĺ		- <u>i</u> -i		-¦-¦	NR
inc _		1_1_		_ _		i_		<u> </u>		- -	NR
olybdenu		1_1_		<u> </u>		i –	i	i-i		- -	NR

Lab Name:	TEST_AME	RICA	· · · · · · · · · · · · · · · · · · ·	_			
Lab Code:	12028_	Lab	Job No.:	_1199	***************************************	Batch No	.: 22858_
Preparatio	on Blank	Matrix	(soil/wat	er):			
Preparation	on Blank	Concent	ration Un	its (ug/L or	mg/kg):		

Analyte	Initial Calib. Blank (ug/L)	c	Cont		uing Calib lank (ug/L 2			C	 Prepa- ration Blank C	
Aluminum_		Τί			1	1		T		NR
Antimony_				Ī	j.	-		i-i		NR
Arsenic	4.7	ן שׁן	4.7_	Īυ	4.7	İΰ	4.7	ָּוֹ <u>ט</u> וֹ		P
Barium		II i		i		ĺ		i i		NR
Beryllium		-i-i		j –		i [–]		i-i		NR
Cadmium]]		i		i-	1	`		NR
Calcium_		-i-i		i ⁻		i –		i-i		NR
Chromium_		-i-i		i-		i-		i-i		NR
Cobalt		i	7	i		i٦		' -		NR.
Copper		-i-i		i-		i-		i-i	\ -	NR
Iron		-i-i		i –		i-		i-i	[NR
Lead	2.7	ט ו	2.7	Ū	2.7	įσ	2.7_	Ū	-	P
Magnesium		<u> </u>		İ		İ	i	ίi		NR
Manganese		<u> </u>		i ⁻				1	- -	NR
Mercury		1-1		i ⁻		i –		i-i		NR
Nickel		i		i –		i-		i-i		NR
Potassium		1_1		Ī				i-i		NR
Selenium_				i –	***************************************	i-		i-i	[NR
Silver		_		j –		i –		iti		NR
Sodium				i –		i –		i-i		NR
Thallium_		<u> </u> _		-		i –		-		NR
Vanadium_		. _		i		i –		i-i		NR
Zinc		.i_i		i –		i –				NR
Molybdenu		<u> </u> _		i – i	-	<u> </u>				NR_
i T		i - i -		i -		_	` 			

Lab Name: TEST_AME	PRICA	
Lab Code: 12028_	Lab Job No.: _I199	Batch No.: 22858
Preparation Blank	Matrix (soil/water):	
Preparation Blank	Concentration Units (ug/L or	mg/kg):

Analyte	Initial Calib. Blank (ug/L)	C	Cont		uing Calib lank (ug/L 2			C	Prepa- ration Blank C	 M
Aluminum_		Πİ				ī		Τi		NR
Antimony_		_i_i		i ⁻				i-i		NR
Arsenic		[4.7	Ū		i-		i	i i	ĺΡ
Barium		IIII		ĺ		i		j−i	<u> </u>	NR
Beryllium		III.		įΤ		į –	İ	i⁻i		NR
Cadmium				i_		i ⁻	i	i-i		NR
Calcium				i_		i –	i	i i	-	NR
Chromium_		_ _		I_		ĺ		įΞi		NR
Cobalt		1_1		ĬΞ		ĺ	i	<u>i_i</u>		NR
Copper		_ _				Ĺ		İΤİ	i -	NR
Iron		_ _				ĺΞ		i-i	ì	NR
Lead		_ _	2.7_	Ū		ĺ		ĺΪ	i i i i i i i i i i i i i i i i i i i	P
Magnesium		1_1		1_		İΞ		ίΞi		NR
Manganese		-1-1				ĬΞ	İ	i i	i	NR
Mercury		_ _				<u> </u>		İΞİ		NR
Nickel		_ _		ĺΞ		Ĺ		ΙΞί		NR
Potassium	•	_ _						ΪĪ		NR
Selenium_		. _		Ī		Ĺ	Ì	ΪĪΪ		NR
Silver		. _				Ĭ_		i_i		NR
Sodium		. [_ [Ĺ				NR
${ t Thallium}_{lue} $. _				Ī		ĬΞĺ		NR
Vanadium_		.1_1				<u> </u>		ĬΞÌ		NR
Zinc		.1_[Ē		<u>_</u>		įΞi		NR
Molybdenu		1 1		1		ī	i	iΤi	i i	NR

Calibration Summary

Lab Name:	TEST_AMERICA	A			 		
Lab Code:	12028_	Lab Job No	o.: I19	9	 Batch	No.:	22858_
Initial Ca	alibration So	ource:	INORG	VENT			
Continuing	g Calibration	n Source:	INORG	VENT			

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	 True 	Continui: Found	ng Cali %R(1)		%R(1)
Aluminum_						ll		
Antimony_						ii		
Arsenic	5000.0	_4731.79	_94.6	5000.0	_4750.11	95.0	_4745.41	94.9
Barium			<u> </u>					ii
Beryllium						i i		i — i
Cadmium						ii		i i
Calcium_								ii
Chromium_								ii
Cobalt								ii
Copper								
Iron								ii
Lead	_10000.0	_9575.95	_95.8	_10000.0	_9578.81	95.8	_9583.87	95.8
Magnesium								ii
Manganese								
Mercury								ii
Nickel								i
Potassium	[ll		
Selenium_								ii
Silver								ii
Sodium								i
${ t Thallium}_{-} $						i		i
Vanadium								
Zinc						i		i
Molybdenu						ii		

Lab Name: TEST_AMERICA		-		
Lab Code: 12028_ Lab Job N	Jo.: I199		Batch No.: 2285	8_
Initial Calibration Source:	INORG VENT			
Continuing Calibration Source:	INORG VENT			

Concentration Units: ug/L

	Initial	Calibr	ation	ĺ		H			
Analyte	True	Found	%R(1)	True	Continui: Found	%R(1)		%R(1)	
Aluminum_ _								<u> </u>	N
Antimony_ _	1_			ļ					N
Arsenic _			l	5000.0	_4691.48	_93.8	_4644.07	92.9	P
Barium _						ll			N
$\mathtt{Beryllium} _{\mathtt{L}}$			l			ll		l	N
Cadmium _			l			<u></u>		li	N
Calcium			l	l					N
Chromium_ _	<u></u>		l					l	N
Cobalt _			<u> </u>	l				<u> </u>	N
Copper			1						N
Iron _			l	İ					N
Lead _	ii		l	_10000.0	_9456.93	94.6	_9339.04	93.4	₽
Magnesium _	····								N
Manganese _									N
Mercury _									N
${ t Nickel}_{} _{-}$								<u> </u>	N
Potassium _						<u> </u>			N
Selenium_ _								ll	N
Silver									N
Sodium _				l i					N
Thallium_ _				li					N
Vanadium_ _			l	<u> </u>					N
Zinc _									N
Molybdenu _				i				li	ĺΝ

Lab Name:	TEST_AMERI	.CA		 	
Lab Code:	12028_	Lab Job	No.: I199	 Batch No.: 2	2858_
Initial C	alibration	Source:	INORG VENT		

Concentration Units: ug/L

Continuing Calibration Source: INORG VENT__

Analyte	Initia True	al Calibra Found		True	Continui: Found	_		%R(1)	
Aluminum_									NF
Antimony_									NF
Arsenic	5000.0	_4802.86	96.1	5000.0	4921.28	_98.4	_4983.97	99.7	P_
Barium					Í				NE
Beryllium									NF
Cadmium								i	NF
Calcium								i	NE
Chromium_				1					NF
Cobalt		•		İ					NF
Copper								i	NE
Iron									NF
Lead	_10000.0	9774.44	97.7	_10000.0	_9959.78	99.6	10114.70	101.1	Î ₽_
Magnesium				<u> </u>		ii		İi	NE
Manganese									NE
Mercury				İ				i — i	NE
Nickel									NR
Potassium									NR
Selenium_									NR
Silver									NR
Sodium	i								NR
Thallium_	i								NR
Vanadium_									NR
Zinc	i							i — i	NR
Molybdenu									NR

Lab Name: TEST_AMERICA		-	
Lab Code: 12028_ Lab Job N	o.: I199 <u> </u>		Batch No.: 22858_
Initial Calibration Source:	INORG VENT		
Continuing Calibration Source:	INORG VENT		

Concentration Units: ug/L

į	Initial Calibration			Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	
_ Aluminum						[1	 	_ N
Antimony_						İ			N
Arsenic			l	5000.0	5078.07	101.6	5276.95	105.5	P
Barium			<u> </u>	<u> </u>	İ	ĺ	_	İ	ĺΝ
Beryllium _			j		i	i			İΪΝ
Cadmium					í	i			ļΙΝ
Calcium						i —			ĺΝ
Chromium			i			i —			ĺΝ
Cobalt			i		i			i — —	ijΝ
Copper	i -			<u> </u>				i — —	ĺΝ
Iron			i —	i		i —		i — —	ĺΝ
Lead				10000.0	10305.87	103.1	10824.07	108.2	, ,
Magnesium	i -		i	i [—]	İ				N
Manganese			i			i ——		——— 	N
Mercury									N
Nickel									N
Potassium									l N
Selenium			i —						iίn
Silver	i_		i — —			i ——			i i n
Sodium	i		i — —			i —			ĺΝ
Thallium	i		i —			i —— i			N
Vanadium					-		-		N
Zinc -	i		i —						N
Molybdenu			i		15.6.0	i —— i			N

ICP Interference Check Results Summary

ICP INTERFERENCE CHECK SAMPLE

Lab	Name:	TEST A	MERICA	

Lab Code: 12028_ Lab Job No.: _I199 _____ Batch No.: 22858_

ICP ID Number: TRACE1 TJA61 ICS Source: INORG VENT___

	Т-	rue	Tn:	itial Found	4		Final Foun	4
İ	Sol.	Sol.	Sol.	Sol.	-	Sol.	Sol.	-
Analyte	A	AB	A	AB	%R	A	AB	%R
i								
Aluminum_	500000	_500000	_500176	_500743.6	100.1	_496767	_501357.5	100.3
Antimony_		100		86.6	86.6		97.7	97.7
Arsenic	l	100		102.5	102.5		97.0	97.0
Barium		100		106.0	106.0		105.4	105.4
Beryllium		100		98.7	98.7	l	96.0	96.0
Cadmium		100		94.9	94.9		90.2	90.2
Calcium	500000	_500000	_483773	_484357.3	96.9	471180	_470413.3	94.1
Chromium_		100		99.9	_99.9	<u> </u>	94.7	94.7
Cobalt		100		97.5	97.5		92.7	92.7
Copper		100		97.1	97.1	li	97.3	_97.3
Iron	200000	_200000	_200248	_200637.2	100.3	196099	196413.6	98.2
Lead		100		97.0	_97.0		92.7	92.7
Magnesium	500000	_500000	_521347	_521528.6	104.3	_508925	_508275.2	101.7
Manganese	l	100		95.2	_95.2	li	94.4	94.4
Mercury	ll				<u> </u>			İ
Nickel	ll	100		98.6	98.6		95.0	95.0
Potassium		I						İ
Selenium_		100		103.3	103.3		100.0	100.0
Silver		100		107.0	107.0		103.6	103.6
Sodium		l						
Thallium_		100		99.2	_99.2		86.8	_86.8
Vanadium_		100		98.5	_98.5		92.0	_92.0
Zinc		100		95.9	95.9		93.7	93.7
					l			·

ICP INTERFERENCE CHECK SAMPLE

Lab Name: TEST AMERICA

Lab Code: 12028_ Lab Job No.: _I199 ____ Batch No.: 22858_

ICP ID Number: TRACE1 TJA61 ICS Source: INORG VENT__

1			i .					
	T	rue	 In:	itial Foun	d	[Final Foun	d
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	-
Analyte	A	AB	A	AB	%R	A	AB	%R
Aluminum_	500000	500000	503855	_493613.1	98.7	505429	516786.7	1103.4
Antimony_	Í	100	i [—]		107.0	<u> </u>	: —	1111.2
Arsenic		100			94.5	·		100.5
Barium		100			103.8			114.8
Beryllium		100			98.9	:		103.9
Cadmium		100		96.1	96.1			102.4
Calcium	500000	_500000	495260	483179.1	96.6	497492	509908.8	
Chromium_	<u> </u>	100		96.1	96.1	_		100.4
Cobalt		100		95.4	95.4			103.1
Copper		100			95.3			102.2
Iron	200000	200000	203647	201309.3	100.7	203771	208065.6	:
Lead		100	_		98.8	-	_	106.1
Magnesium	500000	_500000	531339	_526171.1	· —	531916	_541350.4	,
Manganese		100		_	96.8			96.3
Mercury					i –			
Nickel	l	100		98.2	98.2		104.5	104.5
Potassium					i [—] i			
Selenium_		100	i	98.3	98.3		98.9	98.9
Silver		100		102.5	_ '		105.9	_
Sodium					,			
Thallium_		100	i	94.4	94.4		103.9	103.9
Vanadium_		100		95.8	95.8		105.5	
Zinc		100		96.8	_96.8		101.6	_
					İ			

ICP INTERFERENCE CHECK SAMPLE

Lab Name:	TEST_AMERICA	

Lab Code: 12028_ Lab Job No.: _I199 _____ Batch No.: 22858_

ICP ID Number: TRACE1 TJA61 ICS Source: INORG VENT___

	T	rue	Initial Found			Final Found			
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.		
Analyte	Α	AB	A	AB	%R	A	AB	%R	
Aluminum_	500000			1		. 519360	514065.6	102.8	
Antimony_	l	100					108.0	108.0	
Arsenic	1	100		İ			106.8	106.8	
Barium	l	100				i	114.4	114.4	
Beryllium		100					104.2	104.2	
Cadmium		100		Í			103.8	103.8	
Calcium_	500000	500000				517314	510395.8	102.1	
Chromium_	<u></u>	100		j.	-i	i i	102.5	102.5	
Cobalt		100		i	- i	i i	103.2	103.2	
Copper	i	100			_ i		99.6	99.6	
Iron	200000	200000			- i	209915	208186.0	104.1	
Lead	İİ	100			_ i	i i	105.5	105.5	
Magnesium	500000	_500000				545186	_540613.6	108.1	
Manganese	l	100				ii	_	95.2	
Mercury	l					ii		i —	
Nickel		100				ii	103.7	103.7	
Potassium								İ	
Selenium_		100			_i	i — i	92.1	92.1	
Silver		100				į i	104.0	104.0	
Sodium		l i			- i				
Thallium_		100			_i	ii	105.0	105.0	
Vanadium_		100			_i	i l	107.1	107.1	
Zinc		100			_ii			101.1	
		i			_1	ll			

Spike Sample Recovery Summary

LAB SAMPLE NO.

SPIKE SAMPLE RECOVERY

Lab Name:	TEST_AMERIC	1		BSS070207
Lab Code:	12028_	Lab Job No.: I199	Bat	ch No.: 22858_
Matrix (s	oil/water): \$	SOIL	Level	(low/med): LOW

% Solids for Sample: 100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

 Analyte 	Control Limit %R	Spiked Sample Result (SSR)	C	Sample Result (SR)	C	Spike Added (SA)	%R	Q	 M
Aluminum			\top		! 			 	NR
Antimony			-		 				NR
Arsenic	75-125	187.6593	i-i	0.4700		200.00	93.8	¦-	P_
Barium	i -j		i-i		,			_	NR
Beryllium	·		i-i		¦-¦			[-	NR
Cadmium			1-1		¦−¦			¦-	NR
Calcium			-						NR
Chromium			i-i		¦-¦			¦-	NR
Cobalt			iti	· · · · · · · · · · · · · · · · · · ·	-			¦-	NR
Copper			i-i		-				NR
Iron			-		!			-	NR
Lead	75-125_	47.9448	i-i	0.2700	ן עד	50.00	95.9	-	P
Magnesium			i-i					-	NR
Manganese	i		iTi		i-i			-	NR
Mercury	i		i-i		-i			-	NR
Nickel			i-i		'-¦			-	NR
Potassium			iTi		-i			-	NR
Selenium_			i-i					-	NR
Silver	i		iΤi		-i	 		-	NR
Sodium_	i		iTi		-i		!		NR
Thallium_			iTi		-i		!		NR
Vanadium_			i-¦		-				NR
Zinc			i-i			[-	NR
Molybdenu			i-i		-;	I	[-:	NR
j			i		-i	i		-¦	

 	TITMS		

SPIKE SAMPLE RECOVERY

Lab Name: TEST_AMERICA	840264MS
Lab Code: 12028_ Lab Job No.: I199	Batch No.: 22858_
Matrix (soil/water): SOIL	Level (low/med): LOW

% Solids for Sample: _92.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Sample Result (SSR)	C	Sample Result (SR)	c	Spike Added (SA)	%R	 Q	 M
Aluminum			-		 -	***************************************		-	NF
Antimony			<u> </u>		-				NE
Arsenic	75-125	182.4828	i-1	1.0140		215.75	84.6	¦-	P
Barium —			i — i					-	NE
Beryllium	i		i-i		-			-	NR
Cadmium			i Ti	- The state of the	i — i			-	NR
Calcium			i-i		i-i			-	NR
Chromium_			i i		i i			_	NR
Cobalt			iΞi		i_i			_	NR
Copper			ΙΞί					_	NR
Iron					i <u> </u>			_	NR
Lead	75-125_	50.7758_	_	2.1420	<u> </u>	53.94	90.2	_	₽
Magnesium			_		1_1				NR
Manganese			_		_				NR
Mercury			_		1_1				NR
Nickel			_		_				NR
Potassium			_		_				NR
Selenium_			_		_1			_	NR
Silver			_		_1				NR
Sodium			$ _ $		_1			_	NR
Thallium_			_		_			_	NR
Vanadium_			_		_1,			_	NR
Zinc					_1				NR
Molybdenu			_		_1.			_	NR
			$ _ $		_ [ĺ	

'om	ments:							
•			 					
		•			 	 	 	

Sample and MS Duplicate Results Summary

DUPLICATES

Lab Name: TEST_AMERICA	LCSSD055-D
Lab Code: 12028_ Lab Job No.:I199	Batch No.: 22858_
Matrix (soil/water): SOIL_	Level (low/med): _LOW
% Solids for Sample: 100.0	% Solids for Duplicate: 100 0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

]		1	- M-1449	i	11	1	
į	Control		i					
Analyte	Limit	Sample (S)	c	Duplicate (D)	С	RPD	Q	М
Aluminum					<u> </u>		` -	NR
Antimony_			i – i	····	i – i	i i ——— i		NR
Arsenic		82.0828	-	80.4918		2.0	¦-	P
Barium _			- 		-		\ <u>-</u>	NR
Beryllium				· · · · · · · · · · · · · · · · · · ·	¦-¦		¦-	NR
Cadmium	-		- i		-		¦	NR
Calcium					l-l		-	NR
Chromium			- i i	*****	¦-¦		¦-	NR
Cobalt			· Tii					NR
Copper	<u> </u>		-i i		i-i		!-	NR
Iron			-;;		-		-	NR
Lead		84.9744	−i i	82.5462	i-i	2.9	-	P_
Magnesium			Tii		-		-	NR
Manganese			−i i		i-i	 	-	NR
Mercury			-i i		-		1-1	NR
Nickel			-j i			ii	1-1	NR
Potassium			-i i	****	-		1-1	NR
Selenium			-i i		i-i		-	NR
Silver	i		-	* 51·4·4·			-	NR
Sodium			−i i		:		i-i	NR
Thallium_			−i i	,	- 1		1-1	NR
Vanadium_			−i i	*****	-1		1-1	NR
Zinc			-i i			<u> </u>	1-1	NR
Molybdenu			-i i		-		-	NR
			-i i		-¦		-	
			_ ' '		_	I I	1 1	

DUPLICATES

Lab Name: TEST_AMERICA	840264D
Lab Code: 12028_ Lab Job No.:I199	Batch No.: 22858_
Matrix (soil/water): SOIL_	Level (low/med): _LOW
% Solids for Sample: 92.7	% Solids for Duplicate: 92.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

l	1	1	1	1)	1		-
	Control							
Analyte	Limit	Sample (S)	C	Duplicate (D)	C	RPD	Q	M
Aluminum_			<u>_</u> i		_¦		i	NR
Antimony_						i Ti	ıί	NR
Arsenic		1.0140	ט	1.0140	ן ט	i i	Ĭ	P
Barium			ÌΪ		İί	i —— i	i ⁻	NR
Beryllium			i-i		iΞi	j i	i T	NR
Cadmium			j-i		i i	i	i-	NR
Calcium_			ì⊤i.		iΞi	ii	i-	NR
Chromium_			i Ti		i i		i-	NR
Cobalt			i Ti		iTi		i –	NR
Copper		1	i i		i i	i	i -	NR
Iron			i i		ΙĪ		-	NR
Lead	0.5	2.1420	i-i	2.2792	-i	6.2	i-	P
Magnesium			i Ti		i	i — — — i	i-	NR
Manganese			i-i	1.74	-		i	NR
Mercury			i		-i		1-	NR
Nickel			i Ti	-		i l	-	NR
Potassium			i [—] i i		-1		1-1	NR
Selenium_			i i i		-i		-	NR
Silver			i-i i		-i	ii	i-i	NR
Sodium			i i i	-	-	ii	i-i	NR
Thallium_			i i i	-Mr.		<u> </u>	i-i	NR
Vanadium_			j-i i		-		-	NR
Zinc			i i i		-		-	NR
Molybdenu			i-i i		-1		-	NR
i			i-i i		-		-	
		· ————	. —		_ 1	1	1 _ 1	

Laboratory Control Samples Results Summary

LABORATORY CONTROL SAMPLE

Lab Name:	TEST_AMERI	[CA			
Lab Code:	12028_	Lab Job No.:I199	ning to the state of the state	Batch No.	: 22858_
Solid LCS	Source:	ERA D055			
Aqueous LC	S Source:				

İ	Aque	eous (ug/I	ا (د		Sol:	id (r	ng/kg)		
Analyte	True	Found	%R	True	Found	C		its	%R
Aluminum_		<u> </u>							
Antimony_				i_				i	
Arsenic			i	88.8	82.1	i	71.8	106.0	92.5
Barium			i			i	i	<u> </u>	_
Beryllium			j			iTiT			
Cadmium			i	i		i			
Calcium			i	i_		i-i-			
Chromium_			i	,		i			
Cobalt		ii		i_		i			
Copper				i		i-i-			
Iron			i			i-i-			
Lead				88.9	85.0	i	72.7	105.0	95.6
Magnesium				i_			i		_
Manganese			i	i -		i			
Mercury			i						
Nickel				i		- -	i		
Potassium		i		i		- i -			
Selenium_		i		i		- -	j		
Silver			i	i -		- -			
Sodium			i	i -		-i-	i		
Thallium_		i		i -			i ·	i	
Vanadium_		i		i			i	i	
Zinc						-i-	i		
Molybdenu	i		i			-i			

Serial Dilution Summary

ICP SERIAL DILUTION

Lab	Name:	TEST_AMERIC	ZA		840264L
Lab	Code:	12028_	Lab Job No.: _I199	Bato	ch No.: 22858_
Matı	cix (so	oil/water):	SOIL	Level	(low/med): LOW

]			1	Serial	Ī	8		
	Initial Sample	-		Dilution		Differ-		
Analyte	Result (I)	C		Result (S)	C	ence	Q	M
		_			!		_	
Aluminum_	4	_	ı		_ _	1	1_	NR
Antimony_		_			_ _	11	_	NR
Arsenic	4.70	บ		23.50	U		1_	$ P_{\perp} $
Barium		_			. _		_	NR
Beryllium		_1	1		_ _		_	NR
Cadmium		_	1		. _		_	NR
Calcium_		_	1		. _		1_	NR
Chromium_		_			_		1_	NR
Cobalt		_	1		. _		1_	NR
Copper		_1	1.		. _	<u> </u>	1_	NR
Iron		_	1.		. _	ll	_	NR
Lead	9.93_	_	1.	13.50	ן ט	_100.0_	_	P_
Magnesium		_	1.		. _	lI	_	NR
Manganese		_	1.	***********	. _		_	NR
Mercury		_	1.		. _		1_	NR
Nickel		_	1.		. _		_	NR
Potassium		_	1,		. _		_	NR
Selenium_		_1	1.		. _		_	NR
Silver		_	1.		. _		 _	NR
Sodium	1	_	Ι.		.[_[.	<u> </u>	I _	NR
Thallium_		_	١.		. _		 _	NR
Vanadium_		_	1.		. _	11	1_	NR
Zinc		_	1.		1_1	11		NR
l1		- 1			1 1	1	1	Ιİ

Analysis Run Log

Lab Name: TEST_AMERICA Contract:	
----------------------------------	--

Lab Code: 12028_ Case No.: _____ SAS No.: ____ SDG No.:22858_

Instrument ID Number: TRACE1 TJA61_ Method: P_

Start Date: 07/03/07 End Date: 07/04/07

																												_
			ļ											Αı	nal	Lyt	te	3										
Lab	D/-	 mai == =	"		1-	I ~	l =	1 =	<u> </u>	ا ہم ا	<u> </u>	l ~	I ~		l	1 ***	l » -	l s -	l	1	1	1 =	<u> </u>	1	1 –	1	_	1
Sample	D/F	Time	*6	R		s													•	•	K	•	•	N	•	V		M
No.		j 1			1	В	S	A	E	וטו	Α	R	ļO	U	E	В	G	N	G	ļΙ		E	G	A	ļЪ		N	ļo
 1CAL-BLK	1.00	2201	¦—		. X	x	_ x	_ x	x	_ x	_ x	 x	_ X	_ X	_ X	<u>_</u>	_ X	_ X		X	-	¦-	_ x	_	<u>_</u>	x	_ x	_ x
T1CAL1		2206				x				X	x	x	x	!	X	X	X	X	-	X	—	- 	X	-	X	x	: :	x
T1CAL2		2212	i ——			X		•	, ,			x	•	•	X	Х	x	x	-	x		-	x	¦-	X	,		X
T1CAL3		2217			• •	Х	:	:			X	X	:	X	x	Х	x	Х	-	x	-	-	x	¦-	X	•	X	:
ZZZZZZ		2223			i														_		-	-		-			, <u>,</u>	
ICV/CCV		2228	i		Ϊ <u>-</u>	i –	x	i –	_	-	_	-	-	i –	i-i	x	 	-	-	-	-	-	¦-	-	i-	-	-	i
ICB/CCB		2234	i			i	x	i –	_	i-i	_		-	i –	i-i	х	-	-	_	-	i-i	-	-	-	i-	-	-	i –
ICSA		2240	i		`i_	i-	x	_	-	_	_	-	-	i		x	_	_	-	i-	i-i	-	i-	-	i –	-	-	-
ICSAB		2245	i		i-	i –	х	i –	-		_	-	-	i	-	x	<u> </u>	i – i	-	i-	i-	i –	i –	i –	i-	-	-	i —
ZZZZZZ		2251			i –	i –	İ	i –	_	_i	_		****	_	i-i		-	i-i	-	i – i	-	i –	i –	_	i [–]	i-i	ı-i	
ZZZZZZ	1.00	2256	i —		Ϊ <u></u>	i –	i —	i – i	_ j	-i	_	i Ti	_		i	_	i – i	i i	_	_	i - i	_	i – i	_	i –	i – i	ı-i	i-
zzzzzz_	1.00	2302	i		i-	i-	-	-	_	_;	_		_				_	-	-	i-	i – i	_	-	-	i [–]		ı-i	i –
SS070207	1.00	2307			i-	i-	$\bar{\mathbf{x}}$	i – i	-i	-i			_		-	x	_	-	-	i –	i – i	_		_	i —	i i	- i	-
BS070207	1.00	2313	i		i_	i —	x	i – i	-i	-i	_	-	_	_	i-i	X	_	i – i	-	-		_	-	-	i –	i – i	, – i	i –
LCSSD055	2.00	2318			i-	i –	х	i – i	-i	_i	_	i		-	i i	х	_	i i	_ i	i – i	i – i	_	-	_	-	-	_ i	-
SSD055-D	2.00	2324			i-	i —	x	i	Ξį	-i	_	i – i	-	i – i	- i	хİ	_	i – i	-i	-	i i	_	_	_	i-i		_i	-
840264D_	2.00	2329	Í		ï-	i T	х			-i	_	i – i	_	i	-i	хİ	i	_ i	_i	-	<u></u>	_	-	_	i –	i – i	i	ı –
CCV	1.00	2335			ΪĪ	İ_	x	_		-i	_	_ i	_	- i	-i	хİ	_	-i	i	_	-	_	_	_	-			i –
CCB	1.00	2340	i		Ī	i —	x		-i	Ξi	_	i	Ξi	ΙĪ	-i	x	_	-i	_i	i i	i – i	_	i — i	_	i –	i – i	_i	ı —
840264	2.00	2346	l		İ_	i 🗆				\equiv i		i	Ti	i – i	-i	x	_	Ξį	-i	ΙTi	i – i	_	i		_	i	_i	ı —
840264L_	2.00	2351					X		Ξi	Ξi		Ī	_i	Ξi	_i	χį			_i		i	_		_	_	_	i	_
ZZZZZZ	1.00	2357	ĺ		Ĭ_			Ξi	ΞÌ	ΞÌ		$\equiv i$			ΞÌ	_ į	_i	_i			Ī	_				i i	-i	_
ZZZZZ <u></u>	2.00	0002	l		ĺ_	_	<u> </u>	-i	Ξi	ΞÌ		Ξĺ	_i	i	Ξį	_i	Ī,	Ti	-i		_	_	i	_		i – i	-i	_
842872	2.00	0008	l			<u> </u>	$ \mathbf{x} $		_		_i	Ξĺ		i		x		Ξi	Ξi	Ξ	Ξί	_ [Ξi	_		i	Ξį	_
842873	2.00	0013			IΞ		X	_		Ξi	_i	Ξi	_i		ΞÌ	X	_		_i				i i	_	- i	- i	_i	_
842874	2.00	0019			1_	_	X	<u> </u>	Ξĺ	_i	_i		\equiv i	\equiv i	Ξĺ	Χ	Ξi	i	_1	_ i			_i	_		_i	Ξi	_
842875	2.00	0025				_	\mathbf{x}	_	_	_	_i	Ξĺ	<u> </u>	Ξĺ	Ξĺ	ΧÌ	Ξi	Ξi	_i			_	Ξi				Ξi	_
842876	2.00	0030				_	X			_	_i	Ξĺ	Ξĺ	Ξĺ	Ξ	X	\exists i	Ξì	_i	i	_i		_i				Ξi	_
840265	2.00	0036			_		_		ΞÌ	Ξi	Ξi	ΞÌ	ΞÌ	Ξi	_	Χİ		Ξi	_i	Ξi	Ξi		Ξi	_i			\equiv i	_
ccv	1.00	0041			[_]	<u> </u>	$\bar{\mathbf{x}}$	_i	_i	_i	_i	_i	_i	_i	i	хİ	_i	_i	_i	_i	Ξi	_	_i	_i	_i			
CCB	1.00	0047				<u> </u>	x	_i	ΞÌ	_i	_ i		_	_	_i	хİ	_i	_i	Ξi	_i	_i	_i	_	i	_ i	_	_	_
ZZZZZZ	2.00	0052			_	أ_ا	_j	_[_	_	_ [أي	Ī	_ -	_ĺ	_i	Ξİ	_i	_	_i	_i	_i	i	_i	i	_	_
i _						_	_	_	_ İ	_	_ [أ	_i	Ξİ	_i	_i	_i	_i	i	_i	_i	_i	_i	i	i	_i	<u>_</u>	_

Lab	Name:	TEST_AMER	ICA	Contract:	
Lab	Code:	12028_	Case No.:	SAS No.:	SDG No.:22858_

Instrument ID Number: TRACE1 TJA61_ Method: P_

Start Date: 07/03/07 End Date: 07/04/07

Lab		1 [•		Aı	na:	Lyt	e	3										
Sample	D/F	 Time	용	R		s																				V		
No.		 			L	В	S	A	E	D	A	R	0	U	E	B	G	N	G	I		E	G	A	L		N	0
ZZZZZZ_	2.00	0058			·¦-	¦-	- 	¦-	¦	-	- 	-	-	— 	¦ —	— 	-	— 	 		 	-	¦-	-	- 	¦-	¦-	-
840268	2.00	0103			i_	i ⁻	i –	i T	i – ;	i –	i –	i		i —	i	x	i —	i –	i –	i –	i —	i –	i [—]	i –	i –	i –	i [—]	i [–]
840269	2.00	0109			i_	i ⁻	i –	i –	_	i –	i –	i –	i –	i –	i [—]	х	-	i –	i –	<u> </u>	i –	i —	i —	i	_	i –	i –	i –
840270		0114			Ĭ	i –	i ⁻	i –	i – i	i-	i –	i –	i –	i –	j —	х		_	_	_	i —	i –	i –	i —	i –	i –	i –	i-
840271	2.00	0120			i_	i ⁻	i –	i ⁻	i – i	i –	i –	i –	i –	i –	i –	Х	_	_	i – i	_	i –	i –	i –	i-	i –	i –	i –	i-
840272		0125			i-	i –	i ⁻	i	i	i –	—	-	i –	i –	i –	Х	-	-	-	_	i –	i –		i –	_			¦-
840273		0131			i-	i-	i-	i-	i –	i –	-	i –	i			Х	_	-	-	-	i –	i –	-	—	-	-	i — i	i-
840274		0136			i-	i-	i-	i –	i-i	i —			-	i – ,	i —	X	-	-	-	-	i –	i –	i –	i – i	i —	-	-	i T
840275		0142			i-	i ⁻	i –	_	i i	_	_	i –	-	-	-	х	_	_	_	_	-	i –	i –	_		i	i —	i –
ccv -		0148			i-	i-	x	<u> </u>	i – i	-	-	-	-	-	- 	X	-	_	_	_	-	_	_	-	_		-	
CCB	1.00				i-	i –	х	i –	i – i	-	-	i –	i –	i –	i – i	x	_				_	_	-	-	-	-	-	i-
840276		0159			i-	i –	İ	i –	i – i	-	-	_		 	i – i	х	-	-	_	-	-	-	i –	i —	-	-	-	i –
840277	2.00		•		i-	i –	i –	i –	i			-	-	-	i – i	x	-	-	-	_	-	-	-	-	_		-	-
ICSA	1.00				i-	i-	x		·	-	-	-	-	-	-	x	-i	-	-	-	_	-	-	_		-		i –
ICSAB	1.00	. ,			\ <u></u>	i-	x	i-	i-i	_	-	-	-	-		х	-i	-		_	-	-	-		-	-	l-i	-
ccv —	1.00				i-	i-	x	¦-,	-	-	-	-	_		-	х	-	-	-	-	-	-	-	-	-		l-¦	-
CCB	1.00	. ,			i-	i-	х	_	-	-	-	-	_	_	-	х	_i	-	-	-	_	_	-	-		-	-	—
i		i			i-	i –		i –	i i	-	-	_	-	-	i – i	i	-i	-i	-	_	~	-		-	_	-	-	i –
		ii			i-	i –	-	-	i – i	-	-	-	- i	-	i-i	T;	- i		_ i	_	-	_	-	_	-	—	-	i –
i		<u> </u>			i-	i —	-	-	i-i	-	-i	-	****	-	-	-	-i	-i	-i	-	-	-	_	i – i	-		—	i —
					i-	i –	_	-	-	-	-	-	-	-	-	-¦	-;	-	- ¦	-	-	-	-	-	-	-	-	i –
		i			i -	-	-	_		-	_¦	-	-	-	-	-¦	-i	-i		- 1	-	-	-	-	-	-	-	i –
		i			i-	i –	-	_	-:	-i	-¦	-	-			~~ ¦	~¦	-¦	-¦	-	-	-	-	i-i	-	-	-	i –
		ı—i			i-	i – .	_	_	- i	-i	_i	-	`¦	¦	! 		-¦	-¦	-	-	-	-	-	-	-	-	-	i –
		i			i-	i – i	-	-	-	-:	T	-i		¦		-;	-¦	-	-	-¦	-	-	-	-	-		¦	
		i	***************************************		i-	i – i	-	-	i – i	[-	-	-¦	-¦	-	-i	-	-¦	- j	-¦	-¦	-	-	i	1	-	1	<u> </u>
					i-	i – i	-			-¦		-	-	-	-	-¦	-¦	٦¦	-	- ¦	-	-	-	-	-¦	-¦	-	-
					i-	i —	-	-	-	-¦	-	-	-	-i	-¦	-¦	-¦	-¦	-¦		-	-	-	- ¦	-	-¦	-¦	-
		i			j -	—	-	-	-	-	-¦	-¦		-	-	-¦	٦¦	-¦	-	-	-	-¦	-	-	-¦	-¦	-¦	-
		—-i			i-	-	-	-	-	-¦	-¦	-¦	-¦	-¦	-¦	٦¦	-		-¦	-¦	-	-	-¦	-¦	-	-¦	-¦	_
		i			i-	i – i	-		-	-¦	-¦	-	-	-	-¦	-¦	-¦	-¦	-!	-	- ¦	-	¦	-	-	-!	-	_
	,				i-	-				-¦	-	-¦	-¦	-	-¦	-¦	-¦	-¦	-!			-	-	-	-	-	-	_
\		!			-	-	-¦	 	-¦	-¦	-!	-¦	-¦	-¦	-¦	-¦	-¦	-¦		¦	-!	-	-	-¦	-¦	-¦	-¦	_

Lab	Name:	TEST	AMERICA	Contract:	
		_	_		

Lab Code: 12028_ Case No.: _____ SAS No.: ____ SDG No.:22858_

Instrument ID Number: TRACE1 TJA61_ Method: P_

Start Date: 07/05/07 End Date: 07/05/07

<u> </u>			1		Ī									A۱	na.	Lyt	.e											
Lab		İ	İ		i											_												
Sample	D/F	Time	%	R	A	s	A	В	В	С	C	C	c	C	F	P	М	М	н	N	ĸ	s	A	N	ΙT	v	Z	М
No.		İ	İ		:	:	s	:	•	:		:	:	ับ	:	В	:		G	ľ	i	•	G	•	!	İ	:	o
İİ		İ	İ		İ	ĺ	İ	İ	İ	İ	İ	İ	İ	İ	İ	İ	İ	İ		İ	i	ĺ	Ì	ĺ	İ	İ	İ	İ
1CAL-BLK	1.00	1035			įχ	X	X	X	X	X	x	X	X	x	X	X	x	x		x	i _	_	x	i_	x	\mathbf{x}	x	x
T1CAL1	1.00	1040			X	X	X	X	Х	Х	Х	Х	x	\mathbf{x}	\mathbf{x}	x	x	x	ί <u> </u>	Х	_		x	iΞ	x	x	Х	x
T1CAL2	1.00	1046			X	X	X	X	X	Х	Х	X	X	X	x	x	x	x	<u> </u>	X			İΧ	İ	X	x	X	x
T1CAL3	1.00	1051	<u> </u>		X	X	X	X	X	Х	X	X	X	Х	X	Х	Х	Х	<u> </u>	X			X	<u> </u>	X	\mathbf{x}	X	X
ZZZZZZ	1.00	1101			I _	 _	<u> </u>	ĺ_	_	_	_	ĺ_		_	<u>_</u>	_				<u> </u>			İ_	ĺ_	İ	İ_ İ		İ_
ICV/CCV_	1.00	1106					X	_					<u> </u>	İ_		X				<u> </u>			<u> </u>	i_	Ĺ.,			i
ICB/CCB_	1.00	1112			1_	<u> </u>	X		_					ĺ	_	Х				Ī_	<u> </u>		İΞ	Ĭ_				İΞ
ICSA	1.00	1117			ĺΞ		X					<u> </u>		Ĺ		Х				[<u> </u>	i _ i		ĺΞ	[_				
ICSAB	1.00	1123					X					<u> </u>				X					i i		ĺΞ	i _	i			
ZZZZZZ	1.00	1130			Ī	<u> </u>	Ì_							i									ÌΞ		i_	i _ i		<u> </u>
ZZZZZZ	1.00	1135			İΞ	ĺ_	Ι								_	_					i – i	_	i T		i –	i – i	_	Ī
ZZZZZZ	1.00	1141			ΙΞ	i_								i_							i_i						_	<u> </u>
840264MS	2.00	1146			ÍΞ		X			_i						x						_	Ī			i - i	_	i —
840266	2.00	1152				l	Í_			Ξi						X						_	i –			iΞi		i — i
840267	2.00	1157			ΙŢ	<u> </u>										X	_	Ti			i – i	_	i –			ΙTΙ		_ '
ZZZZZZ	2.00	1203			IΞ						T					İ	_				ΙŢ	_	i –	i		ΙŢ	_	-
ZZZZZZ	2.00	1209			Ĺ					Ξį	_					_	_	_	_		i Ti		i —	_		i		-
CCV	1.00	1214			i_		$\bar{\mathbf{x}}$		<u> </u>	Ξi						X	Ţ	- T			i – i	_	i –			i – i	Ξį	-
CCB	1.00	1220			ĺΞ		x		_ i	Ξį	_					x	Ti	-i	_i			_	i —				_	
ZZZZZZ	2.00	1225			Ĭ.				- i	-i	-i					İ	Ξį	Ξi	-i		Τi		i —	_		i		i — i
ICSA	1.00	1231			ĬΞ		x		Ξi	Ξi	i		_		_i	$\bar{\mathbf{x}}$	_	T	Ξi		i – i	_	-	_	i	i-i	-i	, T
ICSAB	1.00	1236			[_i		х		_i	Ī		_	_	_	-i	x	_ i	_i	Ξi	-	-i	_	i –	_	i-i	i i	_	ı Ti
CCV	1.00	1242			<u> </u>		x		ij	Ī	Ξį	-i	-i	ΙĪ	Ξi	хİ	-i	_i	Ξi	- i	i			_	- i	T i	<u> </u>	_ i
CCB	1.00	1247					X	_	_	-i	-i	-i	-i	ΙĪ	_i	x	-i	_i	Ξi			_	i – i	_	i – i	i-i	_i	,
ZZZZZZ	1.00	1309							Ξi	_i	_i	_i	_i	_i_i	_i	_ i		_j	_i	-i	-i	_	i –	_	i	-i	Ξį	ı Ti
ZZZZZZ	1.00	1315			i i		i	_i	-i	_i	-i	_	_i	_ i	_ i	i	i	-i	_i	_	-i	_	i – i	-i	i	-i	-i	-
ZZZZZZ	5.00	1323			ii		ΙΞί	Ξi	Ξį	-i	_i	_i	_i	_ i	i	i	Ξi	-i	_i	_	−i	_	_	-i	-i	_i	-i	Ti
ZZZZZZ	5.00	1329						_i	_i	_	_i	_i	_i	_i	_i	_i	_ i		-i	- i	-	_	i	_	-i	-i	-i	i
ZZZZZZ_	5.00	1335					i	-i	-i	-i	-i	_i	_i	_i	Ξį	-i		-i	-i	-i	-i	_	- 	-	-	-i	-¦	_;
zzzzz_	5.00	1341			i i	_ i	- i	-i	-i	-i	-i	_ i	-		-i	-	-	-;	-;	-¦	-i	_	-	-	_;		-	_
ZZZZZZ	5.00	1346			i Ti	_ i	i	i	-i	-i	-¦	-	-	-	-i	-i	T	_ i	-	-	-	-	-	-	-¦	-;	-¦	-¦
ZZZZZZ	5.00				i Ti	_		-¦	-	-¦	-¦	-¦	-¦	-¦	-¦	- i			-¦	-¦	-;	_	-	-¦	-¦	-	-¦	_¦
		Ì			i – i		_	-	-	-¦	-¦	-¦	-¦	-¦	-¦	-	-	-	-;	-¦	-¦	-	-	-¦	-¦	-¦	-¦	-¦

Lab	Name:	TEST_AMER	ICA	Contract:	
Lab	Code:	12028_	Case No.:	SAS No.:	SDG No.:22858_

Instrument ID Number: TRACE1 TJA61_ Method: P_

Start Date: 07/05/07 End Date: 07/05/07

Lab		1												Aı	na.	LуI	te	3										
Sample	D/F	 Time	9.	R		l c	1 7	ם ו	ا م ا			10	10	10	Ιπ	l D	l M	1 10/1	יני ו	l NT	17.		1 7	l at	l m	177		М
No.	D/ F	1144E	, TO	I,										ָ บ									G			V		0
, <u>1.5</u> ,					-		-	1	-	י ו	1.2		0	U 	-	-	U	- "		*	[12	0		-	 	14	
ZZZZZZ	5.00	1357			·¦-	¦-	- 	-	-				¦-	-	¦ – ,	-	-	-	-	- 	-	-	-	-	-	-	_	-
ZZZZZZ	5.00	1403			i_	i –	i	_	_	_	_	i –	i –	i – i	-	-	i –	i – i	-	i –	i –	_	i –	<u> </u>	_	i -	_	i - i
ccv	1.00	1408			i	_	x				_	i –	i –	i – i	i –	X	i –	-	_	i –	_	_	i –	i –	_	i –	_	i – i
CCB	1.00	1414			ï	i –	х			_	_	i –	i –	i —	_	x	i —	i – i	_	i –	i – i	_	i –	i –	-	i – i	-	i Ti
ZZZZZZ	5.00	1419			i-	i T	İ	_		_	_	-	i –	i – i	_	İ	i [—]	i –	_	i –	i –	_	i –	i –	_	i i	_	i – i
ZZZZZZ	5.00	1425			i_	i –	i –	_		_	_	i –		i — i	_	<u> </u>	i –	i – i	_	_	i – i	-	i –	_	_	i – i	_	i i
ZZZZZZ_	5.00	1451			i_	i _ i	i –	_			_		i –	i – i	-	_	i –	i –	_	_	_	_	-	_	_		_	j-;
ZZZZZZ		1501				_	_			_		_	<u> </u>	-			i –	_	_			_	i –	-	_		_	i – i
ZZZZZZ	2.00	1506			i_	i –		_	_		_		-	i i	_		i –	i – i			_	_	i –	_	_	i	_	i Ti
ZZZZZZ	2.00	1512			i_	i				_	_	i - 1	_	i Ti	_	<u> </u>	i –	i – i		i —	i i		<u> </u>		_		_	i [—] i
zzzzzz		1517			1			_	_	-i				i			_			_	—	_	i – i	i – i			_	i – i
zzzzzz	2.00	1523			i –				-i	-i	_	-	-	i —	_				_	_	-	_	i –	-	_	i – i	_	i i
ICSA	1.00	1533			ΪΞ		x	_	-īi	Ξi				i	_	X	i -	i i	_		-	_	_	i — i	_	i – i	_	i i
ICSAB	1.00	1539			ĬΞ	i i	X	Ξį	Ξi	j	_		_	i Ti	_	х			Ξi		i – i	_		_		i	-	i Ti
CCV	1.00	1544					Х	_	_	_			_	İΤİ	_	Х	_	_	-i	_	i – i	_		i-i	_	i i	_	i i
CCB	1.00	1550			Ï_	i _ i	Х		Ξĺ	Ī.	Ī		_	iΞi	i i	x	i	_ i	_i	_ 	i – i			i	i	_ i		i i
		I			i-			<u> </u>	-i	_i	-i	_ i	_	- i	-i		i – i	-i	i	_	_	_	_	-	-i	i-i	_	i – i
					i-	i – i	_ i	-i	_i	-j	-i	T	_	i	i	-	i	i – i	_i	i	_i	_	iTi	-i	_i	_i	_	ı i
					ΪĪ.			_	_			Ī	_	i – i	_	_	_	_i	Ti	_	Ξi	_		i i		Ī	_	ΙTΙ
					Ī		_	_i	-i	-i	-i		_	ΙĪ	_ i	Ξi			i	_	_i	_	_	_i	_i	_i	_	i – i
					ΪΞ		_i	Ξi	Ξi	Ξi	_i			i	Ī	_	i i	-i	_i	_	_i	_	i	-i	-i	_i	_	ıΤi
		I			ΪΞ		Ξi	Ξi	Ξi	Ξi	Ξi			i Ti	-i	Ξi	i	-i	-i	-i	_i	_	i i	i	_ i	i	_	ıΞi
					ĬΞ			_i	_i	_	i	_		_i	_i			Ξi	_i	_i	Ξi		- i		_i	Ti	_	ı – i
								_	_i	_i	ΞÌ	Ξĺ			_			_i	i	_i	Ξì		_i	Ξi	_i	\equiv i		<u></u>
l i		!			<u> </u>				Ξĺ	_i	_				i	_	<u> </u>		_i	_i	_i		i	_ i	Ξį	-i	_	ΙĪ
						<u> </u>		Ξĺ	_i	Ξĺ		_ i	_i	ΞÌ	Ξi	Ξĺ	<u> </u>	_i	_i	_i				-i	-i	-i	_	Γi
					1_1	_1	_	_		_	_	_	_i	_i	_	_			_		_i			Ξĺ	_i	Ξi		Πi
		I			_	<u> </u>		_1	_i	_i	_i	_i	_i	Ξİ	_i	_i	_i		_i	_i	_i	_	_i	_i	_i	_i	_i	Ţ,
					<u> </u> _	_ i	_	_	Ξİ	أ_	Ξĺ	_		_i	_i	_i	_	_i	_j	_i	_i	i	_i	i	_ i	_i		<u> </u>
		I				_i	_ i	_		_		_[_	ΞÌ	_i	_i	_i	Ξİ	ΞÌ	_i	_i	_i	_	i	i	_i	_	Ξi
<u> </u>					1_1	_	_i	Ĺ	_	_	_i	_i	_i	_i	_i	_i	_i	Ξi	_i	_	_i	_i	_i	_i	_i	_i	_i	Ξi
	i					_[_			_i	_i	_i	_i	Ξİ		_i	_i	_i	_i	i	Ξi	_i	_i		Ξi	_i	_i	Ξi
	<u> </u>					_		_	<u> </u>	_i	Ξİ	Ξİ	_i	Ξİ	ΞÌ	_i	_	_	_i		_i	_i	_i	Ξi	_i	Ξi	_i	_i

This is the Last Page of the Document